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Abstract

Sometimes, in order to improve the performance of magneto-hydrodynamical

codes, artificial diffusivity (D) is introduced in the mass continuity equation. In this

communication, an analysis of the effect of the artificial diffusivity on the low-beta

plasma stability in a simple geometry is presented. It is shown that, at low diffusivity, one

recovers classical results, whereas at high diffusivity the plasma becomes more unstable.

Dependence of the stability on D  is suppressed if the volume of flux-tube varies

insignificantly in the course of the perturbation growth. These observations may help the

code runners to identify regimes where the artificial diffusivity is not affecting the results

(or vise versa).

PACS Numbers: 52.30.Cv, 52.35.Py, 52.65.Kj
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When performing magneto-hydrodynamic (MHD) numerical simulations of the

plasma dynamics, one sometimes adds artificial diffusivity to the mass continuity

equation (see, e.g., [1]).   This allows one to eliminate formation of too steep density

gradients and, most importantly, of voids, whose appearance might make a code crash.

On the other hand, the presence of this “smoothing” term may affect the results of the

simulations and introduce some unphysical effects. In order to address these concerns, we

present here an analytic solution of one of the most generic MHD problems, that of the

flute stability [2], with the continuity equation containing an artificial diffusivity. The

solution presented provides some insights on the possible impact of artificial diffusivity

and allows one to identify the situations where this impact may be substantial.  We are

not aiming at explaining any particular set of simulations for any particular device, but

rather provide a general discussion that may serve as a guidance for considering specific

cases.

The set of MHD equations used in this communication are as follows:
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where ρ is the mass density, v is the plasma velocity field, T is the temperature (common

for the electrons and ions), B is the magnetic field, j is the current density, p is the

pressure, D is the artificial diffusivity coefficient, and mi is the ion mass. We are using

the CGS (Gaussian) system of units.

Aside from the presence of the artificial diffusivity D in the continuity equation,

these are equations of ideal MHD. We have dropped all the dissipative processes (except

for the artificial diffusivity) in order to more clearly isolate effects of the finite D.  Later

on in this communication we will also discuss the role of viscous effects, because an

artificial viscosity is also sometimes used in the simulations.

The concerns about the effect of the artificial diffusivity are related to the fact that

it is not easy to provide a physics picture that would lead to the appearance of the

diffusion term in the continuity equation. One can of course take a viewpoint that it is just

a specific model of a particle source, a model for which the source is proportional to ∇2ρ.

However, aside from the somewhat artificial structure of this source, one would then also

have to explain why the presence of this source in the continuity equation is not

accompanied by the appearance of some sources in the momentum equation, Eq. (1a),

and temperature equation, Eq. (1c).  Making the sources and sinks of the momentum and

particle energy such that the corresponding terms would not show up in either of the

aforementioned equations is possible, but it is difficult to associate them with any real

sources.

This does not mean that the use of the artificial diffusivity would necessarily lead

to substantial qualitative errors in the description of the plasma behavior. One can expect
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that in problems where the plasma compressibility is unimportant, the effect of an even

very large D will be weak. Our results support this viewpoint.

Given the lack of a clear physical meaning of the artificial diffusivity, we have

taken the following approach. We just apply the set (1) to the analysis of a well-known

plasma physics problem, that of the flute instability in a simple geometry, and see what

happens. If the solution found does not deviate strongly from the “standard” solution, this

signifies that the diffusion term is harmless.

The geometry is illustrated by Fig. 1a. A cylindrically-symmetric plasma, uniform

in the axial direction, is immersed in a purely azimuthal magnetic field of the current rod.

We consider a low-beta plasma, so that

β π≡ 8 2p B/ <<1 (2)

In the equilibrium, we have a resting plasma, with a uniform density (therefore satisfying

the unperturbed continuity equation with artificial diffusivity) and the temperature T0(r)

varying in the radial direction. The unperturbed pressure p r T r mi0 0 02( ) ( ) /= ρ  (Fig. 2b)

varies in the radial direction and serves as a drive for the flute instability [2]. Under such

circumstances, one can  find a complete analytical solution of the stability problem.

We linearize the  set  of equations (1)  and seek perturbations with the exp(Γt)

dependence on time. Denoting the perturbations by the prefix “δ”, and introducing the

displacement vector

ξξ ≡ δv /Γ , (3)

one obtains from the set (1):

Γ2
0

1
ρ δ δξξ = −∇ + ×⊥p

c
j B0, (4a)
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We have neglected the magnetic field perturbation, because, in the pressure-driven modes

in a β<<1 plasma, it is of order of β compared to the retained terms.

Flute perturbations in the geometry of Fig. 1a are axisymmetric perturbations with

the azimuthal component of the displacement vector ξξξξ equal to zero. Equation (4e) has

then a solution:

ξξ × = ∇B0 ψ , (5)

where ψ is a function independent on the azimuth.  From Eq. (5) one gets:
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By taking the divergence of the first of Eqs. (6), one easily finds that
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B
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where the prime denotes the differentiation over the radius. Substituting this result into

Eq. (4c), one finds that
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whereas Eq. (4b) yields:
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We now consider the first of the equations of the set (4), which yields:
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Using the charge neutrality condition ∇⋅δj≡∇⋅δj⊥ =0 , one finds from this equation that
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At this point, we make an assumption that, in the perturbations,

∂ ∂ ∂ ∂/ / | / |z r p p>> >> ′0 0 . (12)

It is known from the theory of the flute instability that this condition corresponds to the

fastest growing modes [2, 3].  Under  condition (12), Eq. (11) is reduced to
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or, according to the second of Eqs. (6), to
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For the z dependence of the exp(ikzz) type, Eq. (9) yields:
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where

ν ≡ k Dz
2  . (16)

This quantity is an inverse diffusion time over the spatial scale of perturbations,   D ≡1/kz .

Then, from Eq. (4e) and Eqs. (8) and (15), one gets:
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Finally, from Eqs. (14) and (17) one obtains the dispersion relation:
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In the case of a zero diffusion coefficient (or, equivalently, the case of a zero ν),

the dispersion relation acquires a standard form for the flute instability of a gas with

γ=5/3. The stability criterion can in this case be presented as

′ ′+ ′ >p U
p

U
U0

0 2 0
γ

, (19)

where U is specific volume of the flux-tube, U dl B c I r= =∫ / ( / )0
2π , and I is the current

through the rod (Fig. 1a). 

In the opposite limit of a very large diffusion coefficient (i.e., at ν→∞), one again

recovers the stability criterion (19), although with a different γ, γ=2/3. In other words, the

stability criterion becomes more restrictive.  Of course, γ cannot be treated in the latter

case as a normal adiabatic index, which must be greater than one; in our case, it is just a

parameter of the solution.

As we have already mentioned, dispersion relation (18) is a local dispersion

relation: it describes the evolution of perturbations with the length-scale smaller than the

gradient scale length | / |p p0 0′ .To get more quantitative information about the growth rate,

it is convenient to present Eq.(18) in a dimensionless form. Assume that we are studying

the instability in the vicinity of the surface r=a.We introduce the dimensionless growth-

rate, Γ̂ , the dimensionless pressure gradient, g ap p≡ − ′0 0/ , and the dimensionless ν:

ˆ / ; / ; ˆ /Γ Γ= = − ′ =a s g ap p a s2 3 10 20 0 ν ν . (20)

where s p≡ 5 30 0/ ρ  is the adiabatic sound speed. Numerical coefficients in (20) are

chosen in such a way as to make g=1 correspond to the critical gradient in the “ideal”
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case (D=0). Note that this instability is very fast: for Γ̂=1, the dimensional e-folding time

is a/2s.

The dimensionless dispersion relation reads as:

ˆ . ˆ
ˆ ˆ

Γ
Γ

2 1
0 6

= − +
+

g
ν

ν
     (21)

One can show that, at g>0.4, this equation has one unstable root with a purely exponential

growth. The other two roots are stable and, depending on the parameters, are either

exponentially damping, or have an oscillatory component. At g<0.4 all roots are stable;

some of them exhibit an oscillatory damping.

The unstable domain can be split in two sub-domains, 0.4< g<1, and g >1, with

the growth-rate behaving quite differently (Fig. 2). In the first sub-domain, the growth

rate is zero at ν=0 (i.e., at zero diffusivity). At small but finite values of ν, the growth rate

is proportional to ν and can be approximately represented as

ˆ ˆ .
Γ =

−
−

ν
g

g

0 4
1

.     (22)

(this expression is valid for g not too close to the “standard” instability boundary, g=1).

The growth rate is proportional to the diffusivity – a feature of what would normally be

called “negative energy mode.” In our case, as we have g<1 (i.e., we are below the

threshold for the “standard” flute instability), the potential energy perturbation is actually

positive. The occurrence of the analog of a "negative energy mode" is related here to the

aforementioned fact that the artificial diffusivity cannot be easily interpreted in terms of

its effect on the energy conservation.
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Note that the instability at 0.4<g<1 is present even at very small values of the

diffusivity. Asymptotically, at high ν, the unstable solution of Eq. (21) reaches the level

characteristic of the flute instability with γ=2/3, ˆ .Γ ≈ −g 0 4 .

At  g>1 the situation is quite different (Fig. 2). First, the growth rate is positive

even at ν=0; second, if g exceeds the critical value (g =1) by a factor of 2 or more, the

growth rate becomes relatively independent of the artificial diffusion. This is a direct

consequence of the structure of Eq. (21): the second terms varies in the limited interval,

between 0 and 0.6. Thus, its effect on the growth-rate at g>>1 becomes small (because

the first term is large).

Now we briefly consider the effect of viscous dissipation. We include it by adding

a term η∇2v  to the right-hand side of Eq. (1a). It is easy to show that, in the limit defined

by Eq. (12), it enters the problem via an additional term in the left-hand side of the

dispersion relation (18) where now, instead of the term Γ2, we have Γ2+νviscΓ, with

νvisc being the inverse viscous dissipation time over the scale 1/kz: ν η ρvisc = kz
2

0/ . Using

the dimensionless expression for νvisc, ˆ /ν νvisc visc= a s2 , one obtains, instead of Eq. (21),

the following dimensionless dispersion relation:

ˆ ( ˆ ˆ )
. ˆ

ˆ ˆ
Γ Γ

Γ
+ = − +

+
ν

ν

νvisc g 1
0 6

(23)

At a zero artificial diffusivity ν̂=0, the viscous term does not affect the plasma

stability boundary, which remains g=1. Viscosity leads just to a reduction of the growth

rate, and modes mimicking "negative energy modes" are absent. However, when the

artificial diffusivity is turned on, stability threshold becomes lower, and the modes with a

growth rate proportional to ν̂ appear.
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As an illustration of the effect of viscosity on the growth rate, dashed lines on Fig.

2 show the growth rate for the case where νvisc=ν (in other words, for quite high

kinematic viscosity η/ρ0, equal to the artificial diffusivity D). One sees that the growth

rates become somewhat smaller, but no dramatic changes occur compared to the zero

viscosity case. 

Based on these results, we come to the following conclusions regarding the effect

of the artificial diffusivity on the pressure-driven modes. The effect is unimportant if the

following condition holds:

  Γ >> D /D2 (24)

where  D is a characteristic scale-length of perturbations, and we have returned to

dimensional units.

If this condition is violated, two outcomes are possible. If the contribution of the

gas compressibility (the terms proportional to γ) to the growth rate is small, the growth

rate remains insensitive to the artificial diffusivity (despite the fact that D is “large”).

Conversely, if the condition (24) is violated and, at the same time, the dependence of the

growth-rate on γ is substantial, the effect of the diffusivity on the instability becomes

significant, leading to the broadening of the instability range and introducing modes

behaving like negative-energy-modes. Adding viscous terms does not affect these

conclusions, at least in a qualitative way.

Our results may serve as guidance in assessing the effect of a finite D on pressure-

driven modes in numerical simulations. They may also provide some insights into the

effect of a large D on other modes, e.g., current-driven modes. Here it is reasonable to

assume that the role of a large D  will be insignificant if the modes do not depend
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substantially on the plasma compressibility. In particular, the modes that can be described

in the paraxial approximation [4] will probably be insensitive to the value of D. This

suggestion, however, will have to be substantiated by a more detailed analysis.

 This work was performed under the auspices of the U.S. Department of Energy

by University of California Lawrence Livermore National Laboratory under contract No.

W-7405-Eng-48.
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Fig. 1 A low-pressure plasma occupies an area outside a
current-carrying rod (panel a). The effect of this
plasma on the magnetic field is negligible, so that
B0~1/r (panel b, dashed line).  The unperturbed
plasma density is uniform, whereas the plasma
temperature varies in the radial direction. This creates
the pressure variation which is a potential source of
the flute instability in the zone where ′p0<0.
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Fig. 2. Dimensionless growth rates for various values of the
dimensionless gradient g. The solid curves correspond to the
zero viscosity. The dashed curves correspond to the case
where kinematic viscosity η/ρ0 is equal to the artificial
diffusion coefficient D.


